Detailed explanation of NT60 functions

1. Driver introduction

NT60 is a high-performance bus-controlled stepper motor driver, which integrates intelligent motion controller functions, built-in S-shaped acceleration and deceleration commands, and can independently set acceleration and deceleration. It runs Modbus protocol through RS485 network to control the driver and motor in real time.

The physical port introduction of the drive is shown in Figure 1-1:

Figure 1-1

(1) Power

DC18~50V $_{\circ}$ V+ is connected to the positive pole of the DC power supply, and V- is connected to the negative pole of the DC power supply. The input voltage range is DC18~50V.

(2) Motor

A+, A-, B+, B-The driver matches two-phase stepping motor by default, please connect Red, Blue, Green and Black to A+, A-, B+, B- respectively.

(3) Dip switch Settings

SW1, SW2, SW3, SW4 and SW5 are used to set the slave address, ON = 0, OFF = 1. Slave Address = SW1 + SW2 × 2 + SW3 × 4 + SW4 × 8 + SW5 × 16

SW6 and SW7 are used to set the communication baud rate (see the silk screen for details). SW8 is an effective terminal resistance, generally not dialed for short-distance communication.

(4) 5V differential interface (IN1、IN2)

It can be used as a closed-loop encoder and 5V pulse + direction signal (when using 24V input, please connect an external 2K resistor to limit the current).

(5) 24V IO port interface (IN3, IN4, IN5, IN6)

This port has 4 channels of 24V input in total and two channels of 0V output in total. The function can be selected in the debugging software, as shown in Figure 1-2.

Figure1-2

(6) Communication network port

The same two groups of RS485 interfaces can be inserted arbitrarily. The interface definitions are as follows:

Terminal serial number	Identifier	Color
1	RS485_A	Orange/White
2	RS485_B	Orange
3	GND	Green/White
4	-	Blue
5	-	Blue/White
6	-	Green
7	-	Brown/White
8	-	Brown

2. Basic software functions introduction

The basic function location of NTConfigurator software is shown in Figure 2-1. There are a total of 8 commonly used buttons, namely ①Language, ②Communication settings, ③Upload data, ④Download data, ⑤Save parameters to the drive, ⑥Restore factory settings, ⑦Save parameter file, ⑧Import parameter file.

Figure2-1

① Language: NTConfigurator software language supports Chinese (Simplified) and English (US), and the two languages can be switched. It should be noted that the software needs to be restarted each time the language is switched to take effect.

② Communication settings: The communication settings are shown in Figure2-2. Select "Modbus RS485" for the communication setting of NT60. The corresponding port at A can be viewed through "Computer-Properties-Device Manager", and the baud rate set at B refers to the driver silkscreen. After setting A and B, click on C to connect.

😽 NTCfg Build ver 1.0.0.44	
Tool Language Help	
🔍 🕌 🛃 🎑 🎽	STOP
Modbus RS485 0 Modbus Top 1	×
Port COM12	DataBit 8
Jaud Pare ∎ 115200 B	Check
Timeout(ms) 2000	Stop bit 1 Stop Bit
Connected	

Figure2-2

③ Upload data: Upload the data in the drive to the debugging software.

④ Download data: It is only used for parameter import. After reading the parameter file from the hard disk, the parameters will be imported into the debugging software, but not to the drive. You need to click the "Download" button to download the parameters to the drive.

5 Save parameters: Permanently save the currently set/modified parameters to the drive.

6 Restore factory settings: restore the parameters of the drive to the factory default values.

 \bigcirc Save file: save the parameters of the drive in the computer in the form of a file.

(8) Import file: Import the drive parameter file saved before into the debugging software.

3. Driver functions introduction

The Rtelligent bus functional stepping integrates three control methods: 485 communication, pulse + direction and IO. The IO control includes speed mode start and stop plus direction, speed mode forward plus reverse, 16-segment speedometer, 16-segment position meter, fixed-length jog, zero return, limit, analog speed mode (potentiometer speed regulation), Analog position follow mode, torque mode.

(1) Communication control setting

The communication control settings are shown in Figure 3-1 and Figure 3-2. When using communication control, it is necessary to set the Internal pulse application mode to "0: communication control".

①Jog test: As shown in Figure 3-1, the "left and right arrows" in the jog test represent the forward and reverse rotation of the motor respectively, which can be used for motor testing.

Pulse command source [17]					
Internal pulse 🛛 🔻					
External pulse command mode [19]	Jog			1500	
PUL+DIR	Jog Acc[75]	▲ 100 Emergency Dec[78]	\$ 500	750	
Internal pulse application mode[20]			Jog speed[77]	500	
Communication control 🔻	Jog Dec[76]	100	600	250 2750 3000	

_					•	
-	~		r1	٦.	×	л
	ч	u		-	J-	
	-				-	

(2)Point to point movment: As shown in Figure 3-2, "Go positon CCW" and "Go Position CW" in the point-to-point motion test respectively represent the reverse and forward rotation of the motor, which can be used for the point position test of the motor.

Pulse command source [17] Internal pulse	-Point to point movement Movement Operating mode[84] Increment 💌
External pulse command mode [19] PUL+DIR	Acc[70] 200 Dec[71] 200 Speed[72] 600 Position[73,74] 2000
Internal pulse application mode[20] Communication contro]	-10000 -8000 -6000 -4000 -2000 0 2000 4000 6000 8000 10000

Figure3-2

(2) Motor type setting

The motor type settings are as shown in 3-3. When the drive is used with a closed-loop motor, the motor operation mode needs to be set to "servo mode 1". At the same time, IN1 is set to "Quadrature encoder B-phase input", which corresponds to the B-phase of the closed-loop motor; IN2 is set to "Quadrature encoder A-phase input", which corresponds to the A-phase of the closed-loop motor. After the setting is completed, you need to save the parameters first, then power off and restart, the setting will take effect.

(3) Pulse + direction parameter setting:

The pulse + direction parameter settings are shown in Figure 3-4. Among them, IN1 and IN2 are connected to the pulse direction input, and IN3 and IN4 can also be set as the pulse direction. The wiring between the two is different, the former is connected to 5V signal, and the latter is connected to 24V signal.

(4) IO speed mode start/stop + direction setting

The IO speed mode start-stop plus direction setting is shown in Figure 3-5. The motor starts running when IN3 is connected to the level signal, and the motor switches the running direction when IN4 is connected to the level signal. The speed-related parameters are jogged with the motion parameters in the debugging software. The wiring is COM+ to 24 positive pole, IN3, IN4 to 0V.

\overline Setup Q 📝 Parameters <u>1</u> Control parameters 2	Motion parameters 3 Speed/Position Ta	able <u>4</u>
Pulse command source [17]	Stepper Motor Phase[21]	
Internal pulse 🔻	Two phase 💌	丰标ID 100
External pulse command mode [19]	Motor operating mode[22]	
PUL+DIR 🗸	Open loop 🔻	
Internal pulse application mode[20]	Reverse the direction[23]	
IO control: start/stov	Normal	
I/O INx = Input OUTx = Output	Po	larity
roiarity REG valu	le	REG valueNormally ope
IN1[60] Fulse input 🔻 🔁 32	OUT1[66] Alarm 🔻	17
IN2[61] Direction input 🔻 🔡 33	OVT2[67] Brake output 🔍 🔻	18 Normally Clo
IN3[62] Jog CW or start/stop 🔻 🚺 39	OVT3[102] Home completed 🔻	21
IN4[63] Jog CCW or direction 🔻 🚺 40	OVT4[103] Speed arrival 🔻	20
IN5[64] Start Home 🗨 44		
ING[65] Home signal 🗨 📮 43		

(5) IO speed mode forward + reverse setting

The IO speed mode forward and reverse settings are shown in Figure 3-6. The motor rotates forward when IN3 is connected to the level signal, and the motor is reversed when IN3 is disconnected from IN4 and is connected to the level signal. Speed-related parameters and wiring are the same as start-stop plus reverse.

Figure3-6

(6) 16-segment speed table setting

The settings of the 16-segment speed table are shown in Figure 3-7. P105~P120 registers set the motor speed. The start of the speed table is a binary arrangement, such as running multi-stage speed control 1 100rpm, and the status of the IO port is 0 0 0 1. Note that multi-stage speed control 0 generally defaults to 0rpm, and the motor is in a shutdown state when all IO ports are 0.

🕅 Setup Q 📓 Parameters <u>1</u> Control parameters <u>2</u>	🕅 Setup Q	A Parameters <u>1</u> Control	parameters 2	Motion pa	arameters <u>3</u>	Speed/Position Table 4
Pulse command source [17] Internal pulse		Speed table co	Index switch	time[100]	200	Position Tabble
External pulse command mode [19]	Modbus REG a ddress	Name	Data	Unit	Modbus REG a ddress	Name
POL+DTK	105	Speed table index O	0	rpm	125	Position table index O
Internal pulse application mode[20]	106	Speed table index 1	100	rpm	127	Position table index 1
Speed table 🔻	107	Speed table index 2	200	rpm	129	Position table index 2
	108	Speed table index 3	300	rpm	131	Position table index 3
	109	Speed table index 4	400	rpm	133	Position table index 4
I/O INx = Input OUTx = Output	110	Speed table index 5	500	rpm	135	Position table index 5
Polarity	111	Speed table index 6	600	rpm	137	Position table index 6
TWI [co] Pulse issue	112	Speed table index 7	700	rpm	139	Position table index 7
TWI [60] TUISE INput	113	Speed table index 8	800	rpm	141	Position table index 8
IN2[61] Direction input 🔻 🧧 33	114	Speed table index 9	900	rpm	143	Position table index 9
TW3[62] Speed Tab Sal 0	115	Speed table index 10	1000	rpm	145	Position table index 10
TRO[02] Speed Tab Set 0 40	116	Speed table index 11	1100	rpm	147	Position table index 11
IN4[63] Speed Tab Sel 1 🔻 47	117	Speed table index 12	1200	rpm	149	Position table index 12
IND[64] Speed Tab Sel 2 💌 🔽 48	118	Speed table index 13	1300	rpm	151	Position table index13
	119	Speed table index 14	1400	rpm	153	Position table index 14
[IN6[65]] Speed Tab Sel 3 ▼ 49	120	Speed table index 15	1500	rpm	155	Position table index 15
	120	Speed capie Hudex 15	1000	rþm	155	resition table index 15

Figure3-7

(7) 16-segment positon table setting

The setting of the 16-segment location table is shown in Figure 3-8. P125~P155 registers set the motor stroke, and P72 sets the speed. Start up in the same way as the speed table.

🕎 Setup Q 📓 Parameters <u>1</u> Control parameters 2	arameters <u>3</u> - 3	Speed/Position Table 4		
Pulse command source [17] Internal pulse	200	Position Tabble	e control	
External pulse command mode [19]	Modbus REG a ddress	Name	Data	Unit
PUL+DIR	125	Position table index O	1000	Pulses
Internal nulse annligation mode[20]	127	Position table index 1	2000	Pulses
Position table	129	Position table index 2	3000	Pulses
	131	Position table index 3	4000	Pulses
	133	Position table index 4	5000	Pulses
□I/O INx = Input OUTx = Output	135	Position table index 5	6000	Pulses
Polarity	137	Position table index 6	7000	Pulses
REG value	139	Position table index 7	8000	Pulses
IN1[60] Fulse input 🔍 🔁 32	141	Position table index 8	9000	Pulses
IN2[61] Direction input 💌 🔜 33	143	Position table index 9	10000	Pulses
	145	Position table index 10	11000	Pulses
INJ[62] Fos Iab Sel U	147	Position table index 11	12000	Pulses
IN4[63] Pos Tab Sel 1 🔍 🔽 51	149	Position table index 12	13000	Pulses
THE [64] Par Tab Sal 2	151	Position table index13	14000	Pulses
	153	Position table index 14	15000	Pulses
IN6[65] Pos Tab Sel 3 🔻 🗧 53	155	Position table index 15	16000	Pulses

(8) Fixed-length jog setting

The setting of fixed-length jog is shown in Figure 3-9.

📷 Setup Q 🛛 👹 Parameters 1 🛛 Control parameters 2	
Fulse command source [17] Internal pulse External pulse command mode [19] FUL-FUTR Internal pulse application mode[20] JOG position mode	
-I/O IHx = Input OUTx = Output Polarity EEG value IN1[60] Pulse input ▼ 22	Motion parameters 2 Rotion parameters 2 Rotion parameters 2 Speed/Position Table 4
IN2[61] Direction input v 33 IN3[62] Jog CW or start/stop v 39	Movement Operating modeloaj increment Acc[70] 2000 Dec[71] 2000 Speed[72] 6000 Position[73, 74] 2000 Motor position
IN4[63] Jog CCW or direction ✓ 40 IN5[64] Pos Tab Sel 2 ✓ 52 IN6[65] Pos Tab Sel 3 ✓ 53	-10000 -6000 -4000 -2000 0 2000 4000 6000 8000 10000 <

Figure3-9

(9) Homing setting

The setting of the homing mode is shown in Figure 3-10. The parameters of the homing mode are only available in the latest debugging software NTConfigurator 1.0.0.44, and the old debugging software needs to be changed by writing the value of the 06 function code.

□I/0 INx = Input OUTx = Output		
Polar	ity	
	REG value	
IN1[60] Pulse input 🔍 🔽	32	
IN2[61] Direction input 🔻	33	
TW2[co] To a CH on a tout (at a lar		日本能及力式(201] Inx能及机械用多 本 日本後式(200] 正间底层目冬 本
INS[62] Jog CW or start/stop 🔹	39	
TN4[63] Tog CCW or direction -	40	回零品速(XPM()[289] 50 回零低速(XPM()[290] 10 回零加速度(r/s 2)[291] 100 位击偏移[293] 0
Infool Jog con of different t	40	
IN5[64] Start Home	44	源点/限位处理方法[295] 偏移軍-限位重新軸发原点使能后反向找原点
ING[65] Home signal 🔻	43	碰撞回零检测时间(50us)[296] 060 碰撞回零检测速度(RPM)[297] 060 碰撞回零力矩(mA)[298] 000

Figure3-10

(10) Limit setting

The limit settings are shown in Figure3-11. The limit defaults to a normally open sensor. When connecting to a normally closed sensor, you need to change the polarity of the IO port (the small green box is dotted into black and it will take effect after power off and restart).

Figure3-11

(11) Analog speed mode setting

The setting of analog speed mode is shown in Figure 3-12.

	Pulse command source [17]	
	Internal pulse 🛛 🔻	•	
	External pulse command	l mode [1	9]
	PUL+DIR -	ч.	
Inte	rnal pulse application mo 21:用户定制15 - 🔻	de[20] ·]
			_
-I/O IN	x = Input OUTx = Outpu	at	
		Polari	ty PFC]
IN1 [60]	Pulse input 🔻		32
IN2[61]	Direction input 🔹 🔻		33
IN3[62]	Jog CW or start/stop 🔻		39
IN4[63]	Jog CCW or direction $igstar{\mathbf{v}}$		40
IN5[64]	Positive limit 🛛 🔻		41
IN6[65]	Reverse limit 🔷 🔻		42

Figure3-12

Connect the internal lead of the driver to a potentiometer, and then set parameters such as P272 offset, P273 filter, P274 dead zone, P275 zero drift, and P276 3.3V corresponding speed.

Zero drift: Refers to the value of the sampling voltage of the driver relative to GND when the input voltage of the analog channel is zero.

Offset: After the zero drift correction of the value, when the sampling voltage is zero, it corresponds to the input voltage value of the analog channel.

Dead zone: When the sampling voltage is set to zero, it corresponds to the input voltage range of the analog channel.

Speed setting: Input the speed command at the speed corresponding to P276 3.3V.

Speed calculation: The actual speed is equal to the P277 sampling voltage divided by 3300 times the speed corresponding to P276 3.3V.

(12) Analog position follow setting

The follow-up setting of the analog position is shown in Figure 3-13.

Figure3-13

In the application mode of analog position following, there is no other IN start/stop or enable trigger signal. It changes the analog input voltage through potentiometers and other devices to follow the analog position. Since there is no external IN enable/start signal, the position adjustment may follow the analog input immediately after power-on. Beware of the collision behavior caused by this!

The P214 215 register sets the motor position command, and the P216 217 register checks the current position.

(13) Torque Mode Settings

The torque mode settings are shown in Figure 3-14.

🛐 Setup Q 🛛 🐹 Parameters <u>1</u> Control parameters <u>2</u>	Motion parameters 3 Speed/Position Table 4	
Pulse command source [17]	Stepper Motor Phase[21]	
Modbus 06 Write signle register	Two phase 🔻 丰标ID	100
SlaveID: 🖕 1	Motor operating mode[22] Servo mode 1	
Address: 20	Reverse the direction[23]	
Malue 26		r
I/O INx = Input OUTx = Output Polarity REG valu	Polarity e REG value	
IN1[60] QEP Phase B 🛛 🔽 35	OUT1[66] Drive ready 🔻 🧧 22	
IN2[61] QEP Phase A 🔻 🔽 34	00T2[67] Brake output 🔻 📔 18	Normally Clo I/O Status
IN3[62] Speed Tab Sel 2 🔻 🔛 48	OVT3[102] Home completed 🔻 🔁 21	🧿 = Conduction(
IN4[63] Speed Tab Sel 3 🔻 🎦 49	OUT4[103] Speed arrival 🔻 📃 20	INx statuINx t
TNE[64] Positive limit		INI 🔵 INI (
		IN2 🌑 IN2
IN6[65] Reverse limit 🔻 🗧 42		ENI 🌑 ENI
		IN4 🔵 IN4 (

The torque mode needs to update the program to NT60_V230.ehex, and the torque mode needs to match the closed-loop motor.

In the internal application mode 26, the torque forward rotation is realized by setting IN_multi-stage speed control 2, and the torque reverse rotation is realized by IN_multi-stage speed control 3.

Torque setting: write the current in the 165 register, as shown in Figure 3-15.

T		
Modbus 06 Write signle register		
SlaveID: 👖 1		<
Address: 🛉 165	Send	03 06
Value: 🛓 1000	<u>E</u> xit	I/O Status

Torque parameters:

P165: Running torque, unit mA

P75-P77: acceleration, deceleration, speed

P219: Torque hold time, unit ms When it is set to 0, it means that the torque is kept all the time. After the torque reaches the holding time, the state of the motor will be controlled by P220, offline or position-locked.

P220=0, the motor is offline; P220=1, the motor position locks the shaft.